Informatika i Ee Primeneniya [Informatics and its Applications]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatika i Ee Primeneniya [Informatics and its Applications], 2013, Volume 7, Issue 4, Pages 20–33
DOI: https://doi.org/10.14357/19922264130403
(Mi ia282)
 

This article is cited in 3 scientific papers (total in 3 papers)

The distribution of the return time from the set of overload states to the set of normal load states in a system $M|M|1|\langle L,H \rangle |\langle H,R \rangle$ with hysteretic load control

Yu. V. Gaidamakaa, A. V. Pechinkinb, R. V. Razumchikb, A. K. Samuylova, K. E. Samouylova, I. A. Sokolovb, E. S. Sopina, S. Ya. Shorginb

a Peoples' Friendship University of Russia, Moscow 117198, Russian Federation
b Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation
Full-text PDF (346 kB) Citations (3)
References:
Abstract: An analytical method for studying the parameters of the hysteretic control, which is implemented as one of the effective solutions to the overload problem in the network of SIP-servers, is suggested. As a mathematical model, the queuing system $M|M|1|\langle L,H \rangle |\langle H,R \rangle$ with two loops hysteretic control was developed, where $H$ is the overload onset threshold, $L$ is the overload abatement threshold, and $R$ is the discard threshold. Two methods of calculating the Laplace–Stieltjes transform of the distribution function of the return time from the set of overload system states to the set of normal load system states were obtained. The first method consists in solving a system of equations with return times for each state of the set of overload system states as unknowns, the second deals with the recurrence for the Laplace–Stieltjes transform of the distribution function of the return time for each state of the set of overload system states as rational fractional expressions. Both methods allow the effective calculations with standard software tools, as shown in the numerical example.
Keywords: SIP-server overload; queueing system; hysteretic load control; return time to normal load states; Laplace–Stieltjes transform; distribution function.
Received: 26.09.2013
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. V. Gaidamaka, A. V. Pechinkin, R. V. Razumchik, A. K. Samuylov, K. E. Samouylov, I. A. Sokolov, E. S. Sopin, S. Ya. Shorgin, “The distribution of the return time from the set of overload states to the set of normal load states in a system $M|M|1|\langle L,H \rangle |\langle H,R \rangle$ with hysteretic load control”, Inform. Primen., 7:4 (2013), 20–33
Citation in format AMSBIB
\Bibitem{GaiPecRaz13}
\by Yu.~V.~Gaidamaka, A.~V.~Pechinkin, R.~V.~Razumchik, A.~K.~Samuylov, K.~E.~Samouylov, I.~A.~Sokolov, E.~S.~Sopin, S.~Ya.~Shorgin
\paper The distribution of the return time from the set of overload states to the set of normal load states in a system $M|M|1|\langle L,H \rangle |\langle H,R \rangle$ with hysteretic load control
\jour Inform. Primen.
\yr 2013
\vol 7
\issue 4
\pages 20--33
\mathnet{http://mi.mathnet.ru/ia282}
\crossref{https://doi.org/10.14357/19922264130403}
\elib{https://elibrary.ru/item.asp?id=21006083}
Linking options:
  • https://www.mathnet.ru/eng/ia282
  • https://www.mathnet.ru/eng/ia/v7/i4/p20
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Информатика и её применения
    Statistics & downloads:
    Abstract page:463
    Full-text PDF :146
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024